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SUMMARY

Experimental results are presented for transonic flow past cone-
cylinder, sxial.lysymmetric bodies. The drag coefficient and surface
Mach number are studied as the free-stresm Mach nunber is varied and,
wherever possible, the experimental results are ccmpared with theoret.
ical predictions. hterferometric results for several typical flow
configurations are shown and an example of shock-free supersonic-to-
subsonic compression is experimentally demonstrated.

The theoretical problem of transonic flow past finite cones is dis-
cussed briefly and an approximate solution of the axially symmetric
transonic equations, valid for a semi-infinite cone, is presented.

..
INTRODUCTION

&

Trsnsonic flow past certain two-dimensional boties has been the sub-
ject of several recent papers and the phencxnenaare well understood. The
theoretical results of Cole (ref. 1), duderley and Yoshihara (ref. 2),
Vincenti and Wagoner (ref. 3), and others apply to two-dimensional sym-
metrical double-wedge airfoils. The experimental results of Bryson
(ref. 4) and Griffith (ref. ~) substantiate the theoretical work in a
very satisfactory manner. More recently, Vincenti and Wagoner (ref. 6)
and Guderley and Yoshiham (ref. 7) have anslyzed the transonic flow
past two-dimensional unsymmetrical sections, that is, lifting double-
wedge airfoils. Current experiments on lifting double-wedge airfoils
(ref. 8) at the Guggenheim Aeronautical Laboratory of the California
Institute of Technology indicate that agreement between theoretical and
experimental results will again be obtained.

Two-dimensional and axially synmetric transonic flows are of con-
siderable theoretical and practical interest since these two specialized
problems are limiting cases of the “morecomplex problem of the flow about
an arbitrary three-dimensional body.

* The study of sxially symmetric transonic flow is not so complete as
that of two-dimensional flow. In recent years several papers, notably

.
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those of Von K= (ref. 9) and Oswatitsch and Berndt (ref. 10), have
studied the similarity rules of mcislly symmetric transonic flow. Also,
Yoshihara (ref. 11) has calculated the flow about a finite cone at a

.

free-stresm Mach number of 1 by a relaxation technique and has obtained
some experimental verification of the theoretical result. The hodograph
problem for general transonic flow past finite cones is discussed in
reference 8. However, theoretical solutions or experimental.results for
the complete transonic regtie are not, at present, available. The pres-
ent paper presents the results of an experimental investigation of the
transonic flow past cone-cylinder bodies. A conical tip followed by a
cykhlrical afterbody was chosen as the expetiental model for two pri-
mary reasons: (1) The relatively simple geometry of a cone-cylinder
body may simplify the theoretical problem, ~d (2) viscous effects are
minimized; that is, the boundary layer on the cone surface is in a
region of decreasing or constant pressure so that the presence of the
boundary layer will not greatly alter the shape of the body forward of
the cone shoulder.

Theoretical results for the supersonic flow past a cone were first
presented ~ 1929 by Busemann (ref. 12). Busemann‘s solution postulates
a semi-infinite cone and assumes that the flow is conical.;that is,
along rays through the apex of the semi-infinite cone, the flow parame-
ters such as pressure and velocity are constant. The solution is found
by a geometrical construction in the hodograph plane and it is readily
apparent that a conical solution exists only so long as a shock wave is

.

attached to the cone apex and, therefore, the free-stream Wch number
is supersonic. It is interesting to note that Busemannls solution pre-
&Lcts smooth shock-free compression from supersonic to subsonic flow

*

for particular combinations of cone angle and free-stream Mach number.
The conical solution also shows that for a given cone angle and free-
stream Mach number & the surface Mach number is always less than the

Mach number immediately behind the conical shock wave; as & decreases,
the surface Mach number decreases and eventually passes from supersonic
to subsonic values. As was mentioned by Busemann, the conical.solution
for a semi-infinite cone is completely valid for a finite cone so long
as the flow is everywhere supersonic, but when the surface Mach number
is less than sonic the perturbation due to the corner or shoulder of the _
finite cone is propagated forward t~ough the subsonic portion of the
field destroying the conicity of the flow. Thus, the Busemann solution
is completely valid for a finite cone only so long as & is large
enough so that the surface Mach number is greater than sonic.

Taylor and Maccoll (ref. 13) in 1933 pr-sented the results of a
numerical integration of the axially symnetric equtions of motion for
conical flow about semi-infinite cones ad also presented experimental
verification of their theoretical results. Further experimental veri-
fication by Maccoll (ref. 14) was published in 1937. Both of the above

●

papers noted that deviations of the experiments frcm the theoretical _ —
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predictions, notably in the shape of the shock wave, are apparent when
the surface Mach nmber is subsonic..

As was mentioned previously, Yoshihara (ref. IL) has computed, by
relaxation methods, the flow about a cone cylinder at & = 1.00 and
has experimentally verified the calculation. However, theoretical solu-
tions do not exist for the complete transonic regime. Solutions have
not been developed for the flow past a finite cone when & is subsonic
or when M is between sonic and the value of & at which Busemann’s
conical solution becomes valid. Drougge (ref. 15) has computed the flow
field between a detached shock wave and a finite cone by relaxation
methods; however, the position and shape of the detached shock wave were
determined initially frm schlieren photographs.

9

.

The experimental restits reported in this papercover several inter-
esting features of the transonic flow about finite cones. The devia-
tions of the surface Mach number frcsnthe values predicted by conical
theory sre examined for values of I& such that the flow field is tran-
sonic in nature. The behavior of the surface Mach number for subsonic
values of & and as u approaches sonic from subsonic values, is
examined in some detail so that an extrapolation to & = 1.00 may be
made. The above surface Mach number data lead naturaJly to the evalua-
tion of the drag coefficient, and experimental vsl.uesof the drag coef-
ficient in the tran&onic regime are presented.

The physical location of the sonic line in a meridional plane of
the flow about a finite cone is of considerable interest for a theoreti-
cal study of the problem of axially symnetric flow. With this fact in
mind, an interferanetric analysis was made at several typical values
of I& so “asto determine the local Mach number fields about finite
cones. Several exsmples of supersonic to subsonic shock-free compres-
sion are experimentally demonstrated.

Experimental values of the shock-wave angle at the cone tip, par-
ticularly at values of B& where the flow field between the shock wave
and the cone surface is transonic or subsonic in nature, are presented,
snd a comparison with the vslues from conical theory is shown.

The conical solution for flow about a semi-infinite cone demonstrates
that a conical solution does not exist if, for a given cone angle,
& decreases belowa certain minimum M&. This minimum ~ is defined
to be the M& for which shock-wave detachment occurs for a semi-infinite
cone. Whether or not the shock-wave-detachmentMach number for a finite
cone can be determined frmu conical theory is of considerable theoretical
interest. Experimental values of the detachment dist~ce of a shock wave
from a finite cone tip, the distance obtiously beiig zero at attachment,
have been collected frcznseveral sources and the results analyzed in this
report.
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The transonic equations of motion and boundary conditions as derived
by Von K&m& (ref. 9) for axially symmetric flow reqpire several assump-
tions as to the relative magnitude of various terms in the exact equations

.

of motion and the related boundary conditions. To demonstrate that the
transonic equations retain the importsmt features of the exact equations,
an approxhate solution of the problem of conicsl flow about a semi-
infinite cone has been developed employing the transonic equations and
boundary conditions. A COElpUiSOIlOf the -Ct 13US~ solution and the
approximate transonic solution is presented in the report.

The author of this report wishes to express his appreciation for
their helpful advice and criticism to Drs. H. W. Liepmann, J. D. Cole,
and A. Roshko of the California Institute of Technology. The investi-
gation was conducted under the sponsorship and with the financial assis-
tance of the National Adtisory Committee for Aeronautics.

SYMBOLS

Aki=~--
2k+l

a* velocity of soud for & = 1.00

b width of increments of region of integration

drag coefficient; reference area is cone base area

coefficient at & = 1.00

CP pressure

CP* pressure

c chord of

2coefficient, —
()

pa-l
*2 Pm

coefficient at & = 1.00

cone

d cone base diameter

i,k integers

2 path length

% cone-surface Mach number

—

.

-c.

MO free-stresm Mach number

M Mach nudber immediately downstream of a shock wave
Sw
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number of outemnost

index of refraction

stagnation pressure

increment of region of Integration

of air

surface static pressure

free-stream static pressure

velocities in sxial and radial directions, respectively

radial distance from axis of symmetry to point on light path

cone base radius

interferometric fringe shift

nondimensional transonic axial-velocity perturbation in
appendix C; # in appendix B

nondhensional transonic radisl-velocity perturbation in

appendix C; # in appendix B

v on

sxial

surface of body

distance downstream of cone tip

perpendicular distance from axis of symmetry to light path

shock-wave angle

shock-wave angle at cone tip

ratio of specific heats of air, 1.400

axial distance frcm cone shoulder to shock wave
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tangent of shock-wave angle

.

1

cone semiangle

Gladstone-Dale

wave length in

constant

vacuum of light employed

density of

density of

density of

air

undetermined medium

reference medium

free-stream density

perturbation potential .

EXPERIMENTAL EQUIPMENT

Wind Tunnel

The transonic wind tunnel at GALCIT is a continuous-flowwind tunnel.
For supersonic testing, the test-section Mach number may be continuously
varied over a wide range by altering the shape of one flexible wall. The
test-section Mach number is varied by changing the mea of a sonic throat
downstream of the test section when subsonic tests are being performed.
The test-section width is 4 inches and the height
of the flexible test-section wall is discussed in

Interferometer

is 9 inches. The design
reference 16.

The interferometer used in-the present investigation is of the Mach-
Zehnder type. Both light paths of the interferometer are passed through
the wind-tunnel test section, one beam passing through the flow region
under analysis and the other beam passing through the undisturbed flow in
the test section upstresm of the model. The fringe shifts due to density
variations in the boundary layer are eliminated since both beams pass

Y

.
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through the boundary layer on the test-section walls and are affected
shost equally. The growth of the boundsry layer between the two beaus.
is not ccznpensatedby the above arrangement, but the effect is of sec-
ondary importance. A detailed description of the Gl!X31Tinterferometer
and a very complete bibliography on interfercaeter construction is given
in reference 17.

Models

The models were conical-tipped brass cylinders of 20°, 25°, and ~o
semiangle. The base dimneters were between O.~ and O.~ inch. Thus,
the Reynolds nmnbers for the tests, with the base dismeter of the models
as the reference dimension, varied from 55,000 to 143,000. The tips of .
the cones were made as sharp as possible and the msximum tip,diameter of
the dullest of the models was approximately 1/3 percent of its base
diameter. Also, the models were black-nickel plated to improve the photo-
graphic definition. The angle of attack and angle of yaw were adjusted
to zero by equalizing the pressure on the cone surface at four annular
points.

.

+-

EXPERIMENTAL TECHNIQUES

Interferometry

An experimental investigation of flow phenomena is facilitated by
the employment of an interferometer to determine the density fields in
gaseous (or liquld) flows. The interferometer technique possesses the
obvious advsntage of ruminating the need for placing any type of probe
into a flow region where the presence of the probe may completely alter
the undisturbed flow field. A disadvantage is also presentJ however,
since the values of density are not hnmetiately available as the test
is in progress. Amore serious disadvantage is the fact that the inter-
ferometer integrates the density values on its light paths (see appen-
dix A) and, thus, the measurement of density is not localized but is
influenced by homogeneities in the flow which may be well removed
frcm the points of interest.

Two general types of flow are smenable to interferometric analysis,
nsmely, two-dimensional snd sxially symnetric flow. This paper is con-
cerned solely with sxially symmetric flow analysis. A discussion of the
method employed to reduce the finite-fringe interferogrems, such as fig-
ure 1, to density distributions may be found in appendix A. The method,
is essentially that outlined in reference 18. An excellent discussion
of axially symmetric data reduction is given in reference 19 where sev-.
ersl references to earlier papers in the field will be found.

.
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interferczneter-datareduction
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mainly concerned with evaluating the
techniques for sxial.lysymmetric flow by

a

.
investigating the flow about cone cyiinders at Mach-n&bers and cone -
angles where the Busemann conical solution was known to be valid. Ref-
erence 20 presents some experimental results in the same general flow
regimes as are investigated in this report.

Sonic-Line Location by Wave Reflection

The location of the sonic line h a meridional plane of an axially
syrmuetrictransonic flow can be determined experimentally by at least
three distinct methods. The first method is by static-pressuremeas-

, urements, the second is by interfercxnetmicanalysis, ad the third is
that of Mach wave reflection from the sonic line. It should be noted
that at the point of reflection the Mach wave till.be perpendicular to
the stresmilinedirection through the sonic line.

To locate the sonic line within the flow about a cone, a small-
dismeter probe was placed in the free-stresm flow outside of the cone
shock wave. The @obe was in a position such that the probe shock wave
pierced the cone shock wave and entered the flow field about the cone.
The shbck waves formed by the probe closely approximate Mach waves at
large distances from the probe and a typical wave reflection is shown
in figure 2. The perturbations in the flow about the cone caused by

.

the waves do not appreciably affect the position of the sonic line as
shown by figure 3 where a comparison is made of the location of the *
sonic line as found by interferometric analysis and by the wave-reflection
method. !Theprobe method is much more convenient than the pressure-
measurement or interfercmetricmethod since the phenomnon may be observed
with a scblieren system, so that the result is ofitainedvis&y.

Pressure Measurements

The pressure measurements in this investigationwere made either on
a micromancmeter
graph Mach meter

An analysis
symetric finite
distinct regimes

(accuracy of tO.OlmilMmeter of mercury) or on a nomo-
(ref. 21).

EXPERIMENTAL RESULTS AND DISCUSSION

General Flow Characteristics

of the flow of a compressible fluid about an axially
cone, that is, a cone cylinder, indicates that five
of flow are possible. These regimes are given below.
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Regime I.- Regime I is subsonic flow at infinity with a region of
locally supersonic flow downstream of the cone shoulder. A schlieren
photograph of this type of flow is shown in figure 4. It should be noted
that an extremely weak shock wave originates at the cone shoulder and
terminates at the downstream “normal” shock wave. The forked appearance
of the base of the terminating “normal” shock wave is an illusion caused
by the axial symmetry of the flow. The light rays which pass near the
surface of the body in the region of the rearward branch of the “fork”
E&o pass through the outer portion of the shock and the spurious re,ar-
ward branch is caused by the light-rsy deflections in the outer portion
of the shock wave. A meridional section of the shock wave actutiy
includes only the front branch of the fork.

Regime II.- Regime II is supersonic flow at infinity with a detached
shock wave and subsonic flow between the shock wave and the cone. Fig-
ure 1 is a finite-fringe interferogram of this type of flow.

Regime III.- Regime III is supersonic flow at infinity with an
attached curved shock wave and subsonic flow between the initial portion
of the shock wave and the cone. A sclill.erenphotograph of this flow is
shown in figure ~(a). Taylor and MaccolJ’s original paper on conical
flow (ref. 13) includes a schlieren photograph of an attached curved
shock.

Regime IV.- Regime IV is supersonic flow at infinity with an
attached shock wave and tixed supersonic and subsonic flow between the
shock wave and the cone. A schlieren photograph of this flow is shown
in figure ~(b).

Regime V.- Regtie V is supersonic flow at infinity with completely
supersonic flow between the attached shock wave and the cone surface.
The Busema.nnsolution applies in this reghe ad has been verified experi-
?.uentallyin references 13, 14, 19, and 22.

Local Mach Number Contours

The 10CSL Mach number contours in a meridional plane for the flow
about a 25° semiangle cone are shown in figure 6 for flow regimes II, III,
and IV. The local Mach number contours for a 30° semiangle cone in
regime II are shown in figure ~. These data were obtained by interfero-
metric analysis as discussed in appendix A.

The local I&ch number contours.should be normsl to the cone surface
since the cone surface is a flat boundary snd any pressure gradient at
the surface must be parallel to the flat surface. However, near the

8 shoulder of the cone cy~nder the surface is curved by the effect of the
corner expansion on the boundary layer, and thus the local Mach number

.
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centours are not quite
ahead of the shoulder.

perpendicular

Sonic-Line
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to the cone surface immediately

Location

The location of the sonic line can be determined by interferometric
analysis, but a more useful method, in the present investigation,was the
wave-reflection method. The location of the sonic line in regimes II,
III, snd IV is discussed below.

Regime II.- Exsmples of the sonic-line location in regime II are
shown in figures 6(a) and 6(b). The sonic line originates at the cone
shoulder and teminates on the detached shock wave. In figure 7 it may
be seen that a region of supersonic to subsonic compression exists on the
outer portion of the sonic line. The sonic line actusll.yoriginates
slightly upstrem of the cone shoulder. This effect is due to the
rounding of the cone shoulder by the surface boundary layer.

Regime III.- Figure 6(c) illustrates the case of the flow with a
nearly attached curved shock wave. Again, a small region of supersonic
to subsonic compression is present on the outer portion of the sonic
line. The free-stream Mach number is slightly less them the detach-
ment & predicted by the exact conical theory. The question of experi-
mental detachment Mach number is discussed below.

Regime IV.- Several examples of the sonic-line location in regime IV
are shown in figures 3, 6(d), and 8. l?igume3 shows the location as
determined by interferometricmesms and as determined by wave reflection.
The sonic line again originates at the corner and nuw terminates at the
cone tip and not on the shock wave as in regimes 11 smd 111. A shock-
free supersonic-to-subsoniccompression occurs on the forward portion of
the sonic line. The location of the sonic line for a 20° semiangle cone
is shownin figure 8. The agreement between the theoretical and experi-
mental location is satisfactory near the tip of the cone and for some
Ustance downstream of the tip.1

The question of smooth shock-free supersonic-to-subsoniccompres-
sion has been the subject of much discussion in recent years. The above
experimental results demonstrate that such a flow is possible. However,
the smooth compression is not of primary hportsnce, but rather the con-
ditions under which it occurs. These conditions are that the sonic sur-
face bounds a zone of subsonic flow completely enclosedby a region of
supersonic flow and a solid surface.

%he existence of this type of flow is indicated by the experimental.
results of Taylor and MaccoU (refs. 13 and 14.)and was also discussed by
Tsien (ref. 23).

.

.

.
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As an exsmple of non-shock-free supersonic-to-subsonic compression,
consider the flow past a two-dimensional airfofi at high subsonic speeds.
The local supersonic zone on the airfoil is terminated by a shock wave
and smooth compression through sonic velocity does not occur. In the
twcwiimensional case, however, the supersonic zone is boundedby a sub-
sonic region and a solid surface. This is the opposite arrangement to
that in the flow about a cone, in regime IV, where shock-free supersonic-
to-subsonic compression does occur.

The above considerations iJ1.ustratethat the existence (or stabi~ty)
of shock-free compression through sonic velocity may not be a local phe-
nomenon but may depend on the arrangement of the complete flow field.

Shock-Wave Angle

The angle of tie attached shock wav$ at the nose of the cone was
determined for a 20° and a 25° semisngle cone in flow regimes III, IV,
and V. The vslues are shown in figure 9. Similar experiments are
reported in references 13 and lk. Reference 22 presents data for one
cone angle at one mch number in regime III and one Mach number in
regime IV. The agreement between the exact theory and the experimental
values at the cone tip is very good even in regimes 111 and IV where the
exact theory is not applicable for the complete finite cone.

Surface lkch Nunber Distribution

The distribution of the surface Mach number MS on a 25° semiangle
cone for various vshes of & is shown in figure 10 and that on a 20°
semiangle cone, in figure 11. Several characteristics of these distri-
butions are of particular interest.

(1) Surface Mach number near the shoulder deviates from the Busemann
conical values as soon as Ms = 1.00 is attained. Surface Mach number
near the cone tip agrees quite well with the conical values until the
theoretical detachment I& occurs. At the corner MS should, except

for boundary-leyer effects, always be sonic if MS forward of the
shoulder is subsonic.

(2) As & approaches 1.00 from the subsonic or frcxathe super-
sonic regimes, MS at aparticuler chordwise station approaches a con-
stant value. This behavior implies that

.
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The same
reference 24,

&:l.oo is

behavior of MS on two-dimensional sections was noted in
and thus the concept of stationary values of Ms at
established for two-c%lmensionaland axially symnetric flow.

Since these two cases represent limiting cases of the flow about general
three-dimensional bodies, the stationary MS concept can probably be

applied quite generally if suitable care is taken in choosing the range
of & about & . 1.00 in which the so-called “MS freeze” is

applicable.

(3) AS % progresses frczna subsonic value through & = 1.00
and on to a value in regime V, the Mg at a particular chordwise sta-
tion probably varies quite smoothly with no abrupt variations, even at
attachment of the shock wave, except for a region quite near the tip
where large variations may occur when the shock wave attaches.

Drag Coefficients

The drag coefficients for the 20° and 25° semiangle cones are shown
in figure 12. The values at ~ = 1.00 were determined by extrapolating

the Ms data in figures 10 andll to ~= 1.00.

Using the concept of stationary values of Ms at l& = 1.00, the
drag-curve slope at & = 1.00 beccmes (see ref. 4 and appendix B)

where

4/(7 i-
of the

dc~ 4 2 CD*=— -—

m &=l.oo 7+1 7+=

C.!D*is the drag coefficient at & = 1.00.

1) of the drag-curve slope is derived frcm
pressure coefficient while the term (Z/(7+

L

(1)

The first term

the first-order term
lJ CD* represents

the contribution of the second-order terms. ‘The fitude of the

second-order term ~/(7 + l]CD* is shown by the difference in slope

of the pairs of lihes drawn through CD* in figure 12.

The experimental results also indicate that

.

.

d2Ms = o
~2 M#.oo
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This then implies (see appendix B) that

13

and an estimation can then be made of the range ~out ~ = l.~ where
equation (1) is valid.

Conical-flow theory

Shock-Wave Detaclunent

indicates that for a given cone angle of a
semi-infinite cone a certain minimum & is reached below which a coni-
cal solution is no longer possible. This value of M is defined to be
the shock-wave detachment &. However, a finite cone introduces a char-
acteristic length Into the problem so that curved attached shock waves,
which would provide the necessary pressure gradient to turn the flow near
the c“onetip, may exist at values of & less than the conical detach-
ment F&.

Present experimental results indicate only that shock-wave detach-
ment for a given cone angle does not occur at an ~ greater than that
predicted by conical theory. A collection of data from references 22,
25, 26, and 15 is shown in figure 13. “me ratio 5/d where 5 is the
center-line distance from the shock wave to the plane of the cone shoulder
and d is the body dismeter at the shoulder, that is, the sonic point,
is seen to approach asymptotically to the value of S/d at attachment.
The asymptotic behavior of 5/d complicates the fairing of the proper
curve of 5/d versus & particularly in view of the paucity of experi-
mental points in the immediate vicinity of shock-wave attactient.

In reference 27 data are presented for the shock-wave detachment
distance of several cone angles at & = 2.45. A discrepancy was found
between the experimental and theoretical values of the cone angle at
which shock-wave detachment occurs for a fixed value of M&, detachment
appearing to occur at a cone angle slightly greater than that predicted
by the conicsl theory. This behavior would correspond to shock-wave
detachment for a fixed cone augle occurri~ at a value of ~ less than
the theoretical conical value of &. Again, however, the discrepancy
may be caused by the manner in which the experimental.curve was faired.

Thus, the experimental results appear to indicate only that shock-
wave detachment for a finite cone occurs at a vslue of m either less

.
than or equal to the value of & predicted by conical theory but not

.
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at a larger W. The fact that shock-wave detachment does not appear
to occur at a value of & greater than that predicted by the conical
theory indicates that the presence of a boundary layer on the cone tip
does not affect the conicity of the flow near the cone tip to the extent
of precipitating detachment of the shock wave.

Figure13also indicates that when the shock-wave detachment dis-
tsnce is large, the position of the shockwave is dependent only on the
Msmeter of the cone at the shoulder or sonic point and Is independent
of the cone angle. When the shock wave is quite near the cone tip, how-
ever, the detachment distance is also dependent on the cone angle. This
manner of behatior of the shock-wave separation tistance was &Lscussed
by Busemann (ref. 28) and was shown experimentally for two-dimensional
wedge sections by Griffith (ref. 29).

Transonic Similarity

The transonic-shilarity rules for the drag coefficient and pres-
sure coefficient, as derived in reference 10, cannot be checked by the
experimental results of this report. The &-iivatim assumes that the
cone-surface boundary condition is the approximate tangency condition
which is vslid for relatively small angles. A 20° semisngle cone is
the minimum-angle cone for which detached shock-wave flow can be obtained
in the transonic tid tunnel, and thus the experimental models were 20°,

.

25°, and ~“ semiangle cones. The experimental cone angles are much
larger than the cone angles for which the approximate tangency condition
is reasonable, snd, therefore, the trsnsonic-similarityrules of refer-

%

ence 10 are not applicable.

THEORETICAL CONSIDERATIONS

At the present time, theoretical solutions have not been found to
describe the flow about a finite cone for the complete Mach number range.
Theoretical solutions are available for only two Mach number regimes,
namely:

(1) Exact conical theory may be applied if the surface Mach number
is greater than sonic —

(2)At ~= 1.00, Yoshihara (ref. U) has calculated the flow about
small-angle cones by a relaxation technique

No solution has been determined if I& is less than sonic. How-
ever, Van Dyke’s second-order supersonic theory and technique (ref. 30)
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possibly cs.nbe applied to the subsonic case since, if the appropriate
changes of sign are made in the particular solution found by Van Dyke
for the supersonic case, the particular solution beccmes valid for the
subsonic case.

A solution remains to be found for the regime between W = 1.00
and the value of ~ where Ms becomes eq~ to 1.00. The problem

would be greatly simplified if the transonic equations could be employed.
To test the feasibility of the approximations inherent in the trsnsonic
equations, an approxhate solution has been found for conical flow about
a semi-infinite cone using the transonic equations. The details of the
solution are presented in appendix C.

The solution is cmpared with the exact conical theory in figures 14
snd Is. Figure 14 shows the comparison between the shock-wave amgles
predicted by the exact theory and by the transonic approx3m.ation. The
surface Mach number cmparison is shown in figure 15. l?romfigure 15 it
can be seen that the transonic appro-tion is quite satisfactory and
is probably better than slender-body cone theory, since slender-body cone
theory does not consider the presence of the conical shock wave. Also,
figures 14 and 15 show the agreement of the cone angle at shock-wave
detachment as found from the transonic solution and from the exact theory.

The above cmparison of the exact conical solution and the approxi-
mate solution indicates that the trsmsonic equations contain all the
terms of importance in the exact equations for conical flow about cones,
so that the transonic equations may be employed with confidence in the
range of ~ from ~ = 1.00 to an ~ for which Ms = 1.00.

SUMMARY OF RES~TS

The following results were obtained from en investigation of trsn-
sonic flow past cone cylinders.

1. The vsxiation of drag coefficient CD with free-stream ldach

number ~ was determined experimentally. The slope of CD versus M
at I& = 1.00 agrees with the theoretical prediction. The deviation
of @ versus & from the conical flow value of CD when MS < 1.00
is demonstrated.

2. The experimental results for the shock-wave angle, sonic-line
location, and surface Mach nmber in the region near the cone tip indi-
cate that the flow is conical near the tip of a finite cone even when

● the surface Mach number is less than sonic. The surface Mach numbers
for the rest of the cone deviate from the exact conical values when

.
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.

Ms < 1.GQ. Also, a case of shock-free supersonic-to-subsoniccompression
is demonstrated cixperimentally.

3. An approximate solution for transonic conical flow has been
developed and the agreement with the exact conical theory indicates that
the axially syuuuetrictransonic equations retain the important features
of the exact equations.

4. Present experimental values of the detachmnt distance of a
shock wave frcm a finite cone tip do not demonstrate agreement with the
detachment Mach number predicted by conical theory for a semi-infinite
cone and the question of shock-wave detachment from a finite cone remains
undecided.

California Institute of Technology,
Pasadena, Calif., April 15, 1953.

.

.

.

.

.
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APPENDIX A
.

REDUCTION OF INTEWEROMETER DATA

.

An interferometer determines the advancement or retardation of a
light wave in a medim with respect to a coherent light wave in a ref-
erence medium. Since the wave velocities are a function of the indices
of refraction of the respective medium and consequently of the densi-
ties of the mediums, it may be shown that

where

p(z) density of undetermined medium

%“ density of reference medium

1 path length

K Gladstone-Dale constsnt

A. wave length in vacuum of Mght employed

(Al)

z fringe shift; in case of finite-fringe interfero~ams this
is ratio of displacement of a fringe to interval between
undisturbed fringes

W eqdation (Al) it has been ass-d that the light besms traverse
identical geometrical paths, so that refraction, if present, is neglected.
Also, the relationship between the index of refraction n and density is
assumed to be

n= l+Kp (A2)

If n = 1 + a where a <<1, eqyation (A2) is obtained by Unear-
izing the Lorentz law.

For the axially symetric case, the fringe shift for a light path
perpendicular to the axis of symmetry becomes
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where r is the radial distance from the axis of symmetry to a point on
the light path and y is the perpendicular distance from the axis of
symnetry to the light path.

In the present investigation, the
shock wave at a distance ys from the
was the free-stream density pm; thus,

density field was bounded by a
axis and the reference density

..-J

‘( F)r2 -
1/2

(A3)

Weyl (ref. 31) introduced the assumption that S(y) is a linear func-

tion of # in a small interval of y. The validity of this assumption
for the present investigation is indicated by the parabolic nature of
the typical.fringe-shift curves shown in figure 16. If the substitutions

v=r 2

U=fi
.

%3 ‘ Y~2 .

are made, equation (A3) becomes

This iS analogous
equation (A4) for

2where w = r . A
ence19.

s(u) = +
% ~(v) - ~~dv

J
(A4)

Ou +“

to the solution of Abel’s problem. The solution of
p is

J’”% (dS/du)duP(w) .pm=.>”
w G

(A5}

ccmplete proof of the solution may be found in refer-
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If the region of integration in equation (A5) is divided tito equal
increments in r of width b,

‘i
= ib

where i is an integer. A numerical evaludion of equation (A5) is then

J.-1P ri

Pm = l+~&k - ‘k+@d.
=

where

‘s =Nb

and

*
The above solution of the

~k+l]2-i2- fi’

(A6)

2k+l

problem is essentially that of reference 18
and a table of & for 56 “intervslswill be f&nd in reference 18.

F&canthe density ratio determined by equation (A6) the local Mach
nunibermay be computed. An approximate correction to the locsl st_-
tion pressure p.’ downstream of the shock wave was made by ~s~x

that on the cone surface p.’ was determined by the nose shock-wave

angle and at a given chordwise station p.’ varied linearly with the

value on the shock wave at the given station. If the approximate stream-
lines are calculated, as in reference 20, a more refined correction is
obtained. IYmn the experimental values of
graphic map was plotted, ad fran this map
tours we found.

Conical Fields

If it is desired to determine whether
metric field is conical, a simple test can

e tion (A3) it is assumed that

P = P(n)

the local.Mach number a topo-
the desired Mach number con-

or not a
be made.

given sxially
Returning to

sym-
eqya-
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.

where ~ = r/x and x is the sxial distance frcxathe conical origin.
Then equation (A3} becames

.

—

where qs is the tangent of the shock-wave angle and 71 = y/x. Thus,

if the field is truLy conical,

s(y) _fy
x ()x

and a plot of S(y)/x versus y/x for various values of x wild yield
a grouP of coincident curves. Examples of this techmique are shown in
references 19 and 20. It is interesting to note that in reference 20
figure 6(b) indicates conical flow near a cone tip for flow regime IV,
that is, a 35° semiangle cone at I& = 1.87, usingthe above technique.

.

Subsidiary Considerations
*

Model size.- From equation (A3) It is evident that the fringe shift
at a particular chordwise and radial station is a linear function of the

.

model size for fixed values of density. Thus the model should be as
large as is compatible with the test-section dimensions with regerd to
blocking and SO forth.

Finite fringe spacing.- The fringe spacing in the undisturbed field
must be such that a sufficient number of data points may be determined
between the shock wave and the cone surface at a partic@a.r chordwise
station. However, for a given fringe shift S the displacement of the
fringe is proportional to the undisturbed fringe spacing, and the accur-
acy of the fringe data wilJ be improved by ficreasing the undisturbed
spacing. A compromise must be effected between the desire for mmly
fringe shift points at a given chordwise station and the accuracy of the
inditidusl points. In the present investigation, this conqyxmise pre-
cluded a study by interfercmetry of the flow properties in the immec?iate
vicinity of the cone tip when the shock wave was attached.

Accuracy.- The accuracy of the interferometricmethod is affected
by refraction, inhomogeneities in the reference flow, the nmerical
approximation, and so forth. An estimate of the accuracy csn be obtained
by noting the comparison of interferometer data and shock-reflectiondata

●

.
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in figure 3 snd the values of locsl Mach number behind the shock wave
indicated in figures 6 and 7.

Comprehensive discussions of the accuracy of the method may be
found in references 18 snd 19.

.

.
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NWENDIX B

.

VARIATION OF PRESSURE AND DRAG COEFFICIENTS NEAR ~ = 1 ●00

The pressure coefficient

where p~ is the surface static pressure and p= is the free-stresm

static pressure may, in transonic flow, be written as

(Bl)

where MS is the surface Mach m.mber. ~ equation (Bl) it has been
assumed that

40
—.o(M2d)3
P.

that is, the stagnation pressure loss across any shock waves may be
neglected.

{=%2
E = Ms2

Equation (Bl) becomes

.

.

(132)
.

.
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For a fixed body geometry, MS is a function.of & only,
. therefore

E = E(E)

Thus, the first and second total derivatives of
CP with respect to ~

sre

...

(B3)

(B4)

In general, d~/d~ and d2~/d~2 are not known; however, an argument
presented by Liepmann and Bryson (ref. 24) shows that, for ~ = 1.00,
~~d~ = O. The ssme argument, namely, that M= has a stationary vslue

at & = 1.00, cannot be used to evaluate d2~~d~2. However, an inspec-
tion of the experimental data (see figs. 10 and 11) indicates that the
curve of Ms versus & has an inflection paint at & = 1.00 and,

thus, d2~id~2 =0 at ~= 1.00.

Using eqwtions (B3) and (B&) and the above argument, the deriva-
tives of Cp become

!Y5

~ = 1.00, that is, at & = 1.00.
to ~ are then
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The partial derivatives f~~ ~d f~ my be calctited from equa.

tion (B2) and thus

()%’ 4 2 CP*
& ‘—-y+l 7+1

(B5)

L)
*

d%p 127+4 + 107+6 C*—= -
2

(7 + 1)2 (7 + 1)2 p

(B6)

The fore drag coefficient of a finite cone is given by

J
1

CD = Cp(a)da
o

where G = (r/~) 2,” r is the local cone radius, and rb is the cone

base radius. Using equations (B~) and (B6), the derivatives of CD are

()
*

‘D 4 2=— -—
K

CD*
y+l 7+1

and

()
+&

d2CD 127 + 4 107 + 6
—= -

wn2 (7+1)2+ (7+~)2c~*

(B7)

(B8)

A caqm.risen of eqpation (B7) and experimental data is shown in
figure 12. Equations (B5) and (B7) were given previously by Bryson
(ref. 4).

It should
may be,derived

be noted
from the

that the first term 4/(7+ 1) of equation (B5)
linearized transonic Cp (ref. 1) which is

C!P=2
&2 -M82

(7 + 1)



NMA TN 3213 25

.

The second term -@(7 + l]%’

()

of eqution (135 is then of the nature
. of a second-order correctim term. However, if d~/&2 * is c~-

puted from equation (B9), the result does not agree with the first temn
of equation (B6) and is, in fact, of o~site sign.

.
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APPENDIX

TRANSONIC APPROXIMATION

c

FOR CONICAL FLOW

In discussing axially symmetric transonic flow, the following
approximations to the exact ecpations and bo_ydary conditions sre employed.

If qx is the velocity in the axial or X-direction and ~ is the

velocity in the radial or r-direction it is assumed that

%x= a* + $x

qr = #r

where a* is the velocity of sound at ~ = 1.00, @ is the perturba-
tion potential, and @x, ~r<< a*. Then, defining

u=
7+1
— $xa*

7+1v=— $r~*

the continuity equation is approximated by

.

.

.

.

u~-vr -

and the condition of irrotationality

1~v=o

becomes

(cl)

% - Vx= o (C2) .

The exact tsmgency condition on the body surface is replaced by

vo=(7+l)terle (C3) ●

.

.
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.

where V. is v on the surface of the body and e is the inc~nation

. angle of the body surface. The dove relations are derived in greater
detail in reference 9.

To test the feasibility of the approximations inherent in equa-
tions (Cl), (C!2),and (C3) an approximate solution for the flow about
a semi-infinite cone will be developed. This approhtionwilL then
be compared with the Busemann solution of the exact equations.

Conical Solution

Assumi~that u and V are functions of a where

equations (Cl) and (C2) become

Uua+o-va-v=cl

~+v~=o

A solution of the form

u= f(v)

(Cla)

(C2a)

(C4)

will be sought. Frcm equation (C4)

du dU dv—s7—
da dv dc

but from equation (C2a)
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.

Therefore

.

du. 1—---
dv u

The relationship in equation (C5) is exact (see ref. 32).

Differentiating equaticm (C5) with respect to a yields

dv 1—=—
‘~ &d&u

d@

and therefore

(C5)

(c6)

du 1
z=-—

~3 e
d$

Substituting eqmtions (C5), (c6), and (C7) into equation (Cla), the
result is

()
3

vd2u+du=uQ

= ‘v ‘v

The following conditions are imposed on equation (c8).

(a) At the shock wave: If us smd vs are
at the shock wave, then, from the transonic-shock

where

l&M#.-l

The shock-wave single 13 is given by

(C7)

(c8)

the vslues of u and v
polsr relation,

(C9)

.

.
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hence, from equation (C5),

.

.

du
G

(b) On the Cone Surface:
hence

V. .

(Clo)

The tangency condition must be satisfied,

(7+1) t=

where V. is v on the cone surface and

IYcm equation (C5)

du = -tan e
z ~

k exact solution of equation (c8) has not

e (Cll)

6 is the cone semiangle.

(c12)

been found. Eowever, if the
right-hand side of equ–tion (C8) is assumed to be small, an iteration
solution may be found.

First Approximation

As a first approximation to the solution, set the right-hand side
of equation (c8) eqti to zero; that is}

().$% .() (C13)

The solution of equation (C13) is

u= A loge BV (elk)

Applying conditions (C9) and (C1O) to this solution, equation (C14)
becomes

U’us-(%-us) l%= (C15)
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Second Approximation

As a second approximation to the solution of
right-hsnd side of equation (c8) is assumed to be
accuracy by equation (C15). Hence

.—

“

equation (c8), the
given with sufficient

H%)’-v+v’ogee (c16)

The solution of equation (c16) is

(wO -
U=

UJ 3

4V2 [ 1-uS+(~-us) + (~ - us) loge ~ + C loge DV

(C17)

Applying conditions (C9) and (C1O) to this S61ution, equation (C17)
becomes

u= H-us+ (%-us)+(%-%) .ogex-
4$ [ 1‘s

(% + 5%)(% - %) Q= L - ~
2(Lb+l14 ‘s 2(% + Q

The VdUf3S Of us and Vs appearing in equation (c18) are not

independent of the cone semiangle e. Applying condition (C12) to
equation (c18) and solving for vs, the result is

~7+l.)tanq%&+5us)-
log.eVs = 10ge(7+l)t~e+ , . . ( .%

(~+ us)

(*-$- (~-us),

2(7 + 1)3 tanke

pco-%)’

(Clg)

(c18)
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The transonic-shock polar relation also must be satisfied, hence

31

( )P +us
Vs=%l-% (C20) ,

~
,

Because of the nature of equation (C19), explicit solutions of equa-
tions (C19) and
not been found.

The values
and ~ maybe
the surface ~

(C20) for ‘us and VS in terms of % and 13 have

However, a solution may be found graphically.

of ~ and VS thus deterr.riinedfor a given value of e
introduced into equatim (c18). If the value of u on
is desired, then substitution of .

V=vo= (7+l)tane

in equation (C18) yields Uo.

It should be noted
of values for us and

and “weak” shock waves.

Comparison of Second

that, for a given value of El and w, two sets
Vs are found. These.correspond to the ‘tstrong’~

Wave awqle.- The wave

and vs since

Approximation and Busemann

The degree of agreement is

Surface Mach number.-

number is

angle ~ is determined

cot p = ‘6
%0- %

apparent in figure 14.

Conical Solution

by the values of us

h terms of U. and Vo, the surface Mach

\
L

)
--A
7+1

where

(C21)
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The.usual transonic approximation reduces equation (C21) to

M~2 =1+% (C22)

equation (C21) is shown in figure 15. The agreement with the exact
theory is quite satisfactory.

Apple curve.- Two sets of values of us and vs will satisfy equa-
tions (C19) and (C20). The two solutions correspond to the “strong” and
“weak” shock-wave solutions predicted by Busemann. If the values of U.

and V. for all possible cone angles ad for both types of solution are
plotted in the hodograph, the resultant curve is Busemann1s “apple” curve.
The apple curve found in the second approximation is shown in figure 17.

.

.
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